Abstract

Abstract alpha 2-Macroglobulin, one of the major plasma proteinase inhibitors with Mr = 720,000, is known to inhibit proteinases of all four classes through the (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724), but the proteinase binding site of alpha 2-macroglobulin has not been identified precisely. We localized bound proteinase molecules on the electron microscopic images of alpha 2-macroglobulin, using anti-proteinase IgG. Serratial Mr = 56,000 proteinase produced by Serratia marcescens was chosen as the antigenic probe in this study because its affinity to specific antibodies was retained in its bound state to alpha 2-macroglobulin. Dimers of alpha 2-macroglobulin/Mr = 56,000 proteinase complexes cross-linked with anti-Mr = 56,000 proteinase IgG were prepared and subjected to electron microscopic observations. The electron microscopic image of alpha 2-macroglobulin complexed with Mr = 56,000 proteinase had four straight arms with an overall shape looking like the character H. From the way anti-Mr = 56,000 proteinase IgG linked two alpha 2-macroglobulins, it was concluded that the proteinase existed in the midregion of one of the arms. This result helps us to form a more concrete view of the trap mechanism in that one of the arms of alpha 2-macroglobulin wraps the trapped proteinase and holds it isolated from high molecular weight substrates in the surrounding medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call