Abstract

Polymer-dispersed liquid crystals (PDLC) are composite materials consisting of micron-sized droplets of liquid crystal dispersed in a polymer matrix. The easiest method to obtain a PDLC film is the polymerisation-induced phase separation process (PIPS). The liquid crystal is mixed with a monomer of low molecular weight and polymerisation is induced by heat or UV light. The increasing molecular weight of the polymer causes the phase separation of liquid crystal from the polymer matrix as micron-sized droplets. In this work, we have studied the structural changes induced in the polymer matrix of a PDLC after the PIPS process by deuterium nuclear magnetic resonance. Two different selectively deuterated monomers have been synthesized and investigated: isobutyl methacrylate (IBMA-d2) and methyl methacrylate (MMA-d3). The main results were the disappearance of the characteristic two-site hop in poly-IBMA, due to liquid crystal molecules, and the lack of unreacted MMA molecules in the liquid crystal droplets. In this last case, we found that it is possible to confine temporarily the unreacted MMA molecules within liquid crystal droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call