Abstract

Random mesh phases share many common features with the classical lamellar phase in that they are layered phases; but crucially, they possess nonuniform interfacial curvature, since the lamellae are pierced by water-filled pores. The introduction of curvature into the lamellae has been posited as a transitional precursor for other lyotropic phases. In this paper, we show that simple 2H nuclear magnetic resonance (NMR) experiments provide strong indication for the formation of the random mesh phase and the NMR data correlate well with literature results from small-angle X-ray scattering. The thermal evolution of the recorded quadrupolar splitting (DeltanuQ) is monitored within the lamellar phase of two nonionic surfactants, C16E6 and C12E5, as the samples are cooled or heated, and a marked and reversible change in the evolution of DeltanuQ is observed. Data from heavy water and deuterium labeled surfactant show the same temperature dependence and consequently report on the same structural changes with temperature. The formation of the random mesh phase is quantified in terms of an effective order parameter that is unity in the classical lamellar phase and takes values of <1 in the random mesh phase, reaching 0.6 at lower temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.