Abstract

Fragmentation is a major factor limiting mass range and resolution in the analysis of DNA by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protonation of the nucleobase leads to base loss and backbone cleavage by a mechanism similar to the depurination reactions employed in the chemical degradation method of DNA sequencing. In a previous study [Tang,W., Zhu,L. and Smith,L.M. (1997) Anal. Chem ., 69, 302-312], the stabilizing effect of substituting the 24 hydrogen with an electronegative group such as hydroxyl or fluorine was investigated. These 24 substitutions stabilized the N-glycosidic linkage, blocking base loss and subsequent backbone cleavage. For such chemical modifications to be of practical significance, it would be useful to be able to employ the corresponding 24-modified nucleoside triphosphates in the polymerase-directed synthesis of DNA. This would provide an avenue to the preparation of 24-modified PCR fragments and dideoxy sequencing ladders stabilized for MALDI analysis. In this paper methods are described for the polymerase-directed synthesis of 24-fluoro modified DNA, using commercially available 24-fluoronucleoside triphosphates. The ability of a number of DNA and RNA polymerases to incorporate the 24-fluoro analogs was tested. Four thermostable DNA polymerases [Pfu (exo-), Vent (exo-), Deep Vent (exo-) and UlTma] were found that were able to incorporate 24-fluoronucleotides with reasonable efficiency. In order to perform Sanger sequencing reactions, the enzymes' ability to incorporate dideoxy terminators in conjunction with the 24-fluoronucleotides was evaluated. UlTma DNA polymerase was found to be the best of the enzymes tested for this purpose. MALDI analysis of enzymatically produced 24-fluoro modified DNA using the matrix 2,5-dihydroxy benzoic acid showed no base loss or backbone fragmentation, in contrast to the extensive fragmentation evident with unmodified DNA of the same sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call