Abstract

The title compound, C10H15NO2, crystallized with three mol­ecules in the asymmetric unit. These three mol­ecules are quite similar except for slight differences in the torsion angles of the substituents on the ring. The isopropyl C—C—N—C torsion angles (towards the carbon next to the ethyl bound carbon), for example, are −150.63 (11), −126.77 (13) and −138.76 (11)° for mol­ecules A, B and C, respectively, and the C—C—C—N torsion angles involving the ethyl C atoms are 102.90 (13), 87.81 (14) and 86.47 (13)°. The main difference between the three mol­ecules lies in the way they are arranged in the solid-state structure. All three mol­ecules form dimers that are connected through strong O—H⋯O hydrogen bonds with R 2 2(10) graph-set motifs. The symmetry of the dimers formed does however differ between mol­ecules. Mol­ecules B connect with each other to form inversion dimers. Mol­ecules A and C, on the other hand, form dimers with local twofold symmetry, but the two mol­ecules are crystallographically distinct. The B and C molecules are linked to themselves and to each other via C—H⋯O hydrogen bonds. This results in the formation of a three-dimensional network structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.