Abstract
Alzheimer's disease (AD) accounts for almost three quarters of dementia patients and interferes people's normal life. Great progress has been made recently in the study of Acetylcholinesterase (AChE), known as one of AD's biomarkers. In this study, acetylcholinesterase inhibitors (AChEI) were collected to build a two-dimensional structure-activity relationship (2D-SAR) model and three-dimensional quantitative structure-activity relationship (3D-QSAR) model based on feature selection method combined with random forest. After calculation, the prediction accuracy of the 2D-SAR model was 89.63% by using the tenfold cross-validation test and 87.27% for the independent test set. Three cutting ways were employed to build 3D-QSAR models. A model with the highest [Formula: see text] (cross-validated correlation coefficient) and [Formula: see text](non-cross-validated correlation coefficient) was obtained to predict AChEI activity. The mean absolute error (MAE) of the training set and the test set was 0.0689 and 0.5273, respectively. In addition, molecular docking was also employed to reveal that the ionization state of the compounds had an impact upon their interaction with AChE. Molecular docking results indicate that Ser124 might be one of the active site residues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.