Abstract
Insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of human proteome. But to go further, we need at least to know the proteome size, or how many different protein species compose this proteome. This is the task that could be at least partially realized by the method described in this article. The approach used in our study is based on detection of protein spots in 2DE after staining by protein dyes with various sensitivities. As the different protein spots contain different protein species, counting the spots opens a way for estimation of number of protein species. The function representing the dependence of the number of protein spots on sensitivity or LOD of protein dyes was generated. And extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) allowed to counting the number of different molecules (polypeptide species) at the concentration level of a single polypeptide per proteome. Using this approach, it was estimated that the minimal numbers of protein species for model objects, Escherichia coli and Pirococcus furiosus, are 6200 and 3400, respectively. We expect a single human cell (HepG2) to contain minimum 70 000 protein species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.