Abstract

An ideal photocatalyst should have high redox capacity, efficient charge separation, and large reaction surface area. However, it is an extreme challenge to construct a photocatalytic system with above three merits. Herein, the g-C3N4/[email protected]2WO6 composite photocatalyst was prepared by simple wet chemical method. Then the separation pathway of photoinduced charges through the interface was explored by XPS, EPR and active species capture experiments, confirming that the Z-scheme charge transfer route was followed. The optimized composite photocatalyst exhibited the photocatalytic hydrogen production rate of 1219.3 μmol h−1g−1, which is 2.29 times that of pure g-C3N4 (533.4 μmol h−1g−1). Moreover, the photocatalytic degradation rates of RhB and TC were 82.43% and 66.7%, respectively, which were 7.55 times and 1.92 times that of pure Bi2WO6. Ultimately, the enhanced photocatalytic performances were attributed to the synergistic effect of 2D/2D coupling interface and the deposited metal Bi, which not only benefited the efficient charge separation and fast charge migration but also provided the large reaction surface area. In addition, surface plasmon resonance effect of metal Bi can boost the visible light absorption and broaden the light absorption range to the full spectrum. Our study provides a new idea to design high-performance Z-scheme photocatalyst for highly efficient utilization of solar energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.