Abstract

The thermal behavior of airborne electronic equipment submitted to natural convection in closed parallelogrammic air-filled cavities is examined in this study. The cold active wall of the enclosure is maintained isothermal. The hot wall, representing the electronic device, is composed of three parallel discrete bands generating a constant heat flux, separated by two adiabatic bands of equal dimensions. Both walls remain always vertical. The channel is considered adiabatic and the aspect ratio of the cavity is equal to unity. Many configurations are examined while varying the inclination angle of the top and bottom walls of the channel. When the angle is positive the convective heat transfer is favored in comparison with the case of the right cavity, but, on the contrary, it is reduced for negative angles. The resultant enclosures are so called diode cavities in the convective heat transfer sense of the word. The experimental part of the study is achieved with a setup based on electrical data and temperature measurements on the walls. The numerical approach using the finite volume method allows to complete the experimental results with the thermal and dynamical characteristics of the 2D flow. The temperature fields show the thermal behavior of the device during the transient phase after switching it on. The convective results concerning the imposed heat flux treated in this study differ from those corresponding to impose the temperature on the hot bands. The distribution and evolution of the Nusselt number allow to characterize the natural convection occurring in the cavity. The results of this work are consistent with previous studies and allow to predict the thermal behavior of the electronic equipment during the transient phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.