Abstract

Transit time broadening is a major limitation in pulsed wave (PW) Doppler, especially when the angle between the flow direction and the ultrasound beam is large. The associated loss in frequency resolution may give severe overestimation of blood velocities, and finer details in the spectral display are lost. By using plane wave transmissions and parallel receive beamforming, multiple PW Doppler signals can be acquired simultaneously in a 2-D region. This enables tracking of the moving blood scatterers over a longer spatial distance to limit transit time broadening. In this work, the new method was tested using in vitro ultrasound recordings from a flow phantom, and in vivo recordings from a human carotid artery. The resulting 2-D tracking Doppler spectra showed significantly reduced spectral broadening compared with Doppler spectra generated by Welch's method. The reduction in spectral broadening was 4-fold when the velocity was 0.82 m/s and the beam-to-flow angle was 62°. A signal model was derived and the expected Doppler power spectra were calculated, showing good agreement with experimental data. Improved spectral resolution was shown for beam-to-flow angles between 40° and 82°.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.