Abstract

In this paper, we propose a strategy to synthesize a composite electrode comprised of 2D Ti3C2 nanosheets and 1D MoO3 nanobelts by hydrothermal method of synthesis. Ti3C2@MoO3 composite with unique 2D/1D structure possesses the advantage of excellent electrical conductivity, active sites as well as high charge transfer efficiency. As a result, the Ti3C2@MoO3 composite electrode exhibits a high specific capacitance of 624 Fg−1 at 1 Ag−1 as compared to Ti3C2 MXene (321 Fg−1) and MoO3 nanobelts (258 Fg−1) and an excellent cyclic stability with 83% retention after 10,000 cycles. Overall, the novel Ti3C2@MoO3 composite with excellent energy storage features has potential to be applied commercially as an electrode material for supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call