Abstract

This paper reports modeling and simulation of low-loss coupling between polarization-insensitive silicon-on-insulator (SOI) microwaveguides and single-mode optical fiber, using a two-dimensional taper. The proposed structure is a reduction of both sizes of a square-strip waveguide from a 350×350-nm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> cross section to about 155×155-nm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> cross section. At the output facet, the guided mode is spread out and has a non-Gaussian profile, but low-loss coupling can be achieved by optimizing the overlap integral between the submicrometer waveguide mode and the optical fiber one. The calculated coupling losses are lower than 0.2 dB, the alignment tolerance is larger than 4 μm at ±1 dB for the coupling losses, and the total length is about 10 μm."

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.