Abstract

2D organic materials with in‐plane van der Waals forces among molecules have unique characteristics that ensure a brilliant future for multifunctional applications. Soluble organic semiconductors can be used to achieve low‐cost and high‐throughput manufacturing of electronic devices. However, achieving solution‐processed 2D single‐crystalline semiconductors with uniform morphology remains a substantial challenge. Here, the fabrication of 2D molecular single‐crystal semiconductors with precise layer definition by using a floating‐coffee‐ring‐driven assembly is presented. In particular, bilayer molecular films exhibit single‐crystalline features with atomic smoothness and high film uniformity over a large area; field‐effect transistors yield average and maximum carrier mobilities of 4.8 and 13.0 cm2 V−1 s−1, respectively. This work demonstrates the strong potential of 2D molecular crystals for low‐cost, large‐area, and high‐performance electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call