Abstract
Semiconductor colloidal nanocrystals are excellent light emitters in terms of efficiency and spectral control. They can be integrated with a metasurface to make ultrathin photoluminescent devices with a reduced amount of active material and perform complex functionalities such as beam shaping or polarization control. To design such a metasurface, a quantitative model of the emitted power is needed. Here, we report the design, fabrication, and characterization of a ∼300 nm thick light-emitting device combining a plasmonic metasurface with an ensemble of nanoplatelets. The source has been designed with a methodology based on a local form of Kirchhoff's law. The source displays record high directionality and absorptivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.