Abstract

BackgroundThe factors affecting intra-operator variability of two-dimensional shear wave elastography (2D-SWE) have not been clearly established. We evaluated 2D-SWE variability according to the number of measurements, clinical and laboratory features, and liver stiffness measurements (LSM).MethodsAt least three LSM were performed in 452 patients who underwent LSM by 2D-SWE (supersonic shear imaging) out of an initial database of 1650 patients. The mean value of the three LSM was our best measurement method. Bland–Altman plots were used to evaluate intra-operator variability when considering only one, or the first two measurements. Variability was assessed by taking the absolute value of the difference between the first LSM and the mean of the three LSM. Logistic regression was used to assess the factors associated with the highest tertile of variability.ResultsThe limit of agreement was narrower with the mean of the first and second measurements than with each measurement taken separately (− 2.83 to 2.99 kPa vs. − 5.86 to 6.21 kPa and − 5.77 to 5.73 kPa for the first and second measurement, respectively). A BMI ≥ 25 kg/m2 and a first LSM by 2D-SWE ≥ 7.1 kPa increased the odds of higher variability by 3.4 and 3.9, respectively. Adding a second LSM didn’t change the variability in patients with BMI < 25 and a first LSM by 2D-SWE < 7.1 kPa.ConclusionsIntra-operator variability of LSM by 2D-SWE increases with both a high BMI and high LSM value. In patients with BMI < 25 kg/m2 and a first LSM < 7.1 kPa we recommend performing only one LSM.

Highlights

  • The staging of liver fibrosis is highly important in patients with chronic liver disease, because it influences survival and patient management

  • High body mass index (BMI) (≥ 25 kg/m2) and a first liver stiffness measurement by 2D-shear weave elastography (SWE) ≥ 7.1 kPa were associated with higher risk of variability

  • Using the mean of two values of liver stiffness measurement decreased the variability compared to a single measurement

Read more

Summary

Introduction

The staging of liver fibrosis is highly important in patients with chronic liver disease, because it influences survival and patient management. TE has certain limitations including a lack of gray-scale image guidance, the inability to visualize and avoid large vessels and liver lesions at the measurement site, and less reliable results in obese patients and in patients with ascites [6, 7]. Unlike TE, ultrasound-based elastography can map shear wave speed or tissue stiffness in two dimensions, is guided by real time B-mode images and can be incorporated into ultrasound surveillance programs in patients with chronic liver disease. Two-dimensional (2D) shear weave elastography (SWE) based on supersonic shear imaging is an ultrasound elastography technique that has been validated in large patient populations and has been shown to have similar or better diagnostic performance than TE for the assessment of liver fibrosis [8]. We evaluated 2D-SWE variability according to the number of measurements, clinical and laboratory features, and liver stiffness measurements (LSM)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call