Abstract

2D Ruddlesden-Popper perovskites exhibit great potential in optoelectronic devices for superior stability compared with their 3D counterparts. However, to achieve a high level of device performance, it is crucial but challenging to regulate the phase distribution of 2D perovskites to facilitate charge carrier transfer. Herein, using a solvent additive method (adding a small amount of dimethyl sulfoxide (DMSO) in N,N-dimethylformamide (DMF)) combined with a hot-casting process, the phase distribution of (PEA)2 MA3 Pb4 I13 (PEA+ = C6 H5 CH2 CH2 NH3 + , MA+ = CH3 NH3 + ) perovskite can be well controlled and the Fermi level of perovskites along the film thickness direction can achieve gradient distribution. The increased built-in potential, oriented crystal, and improved crystal quality jointly contribute to the high photoresponse of devices in the entire response spectrum range. The optimum device exhibits a characteristic detection peak at 570nm with large responsivity/detectivity (0.44 A W-1 /3.38 × 1012 Jones), ultrafast response speed with a rise/fall time of 20.8/20.6 µs, and improved stability. This work suggests the possibility of manipulating the ordered phase distribution of 2D perovskites toward high-performance and stable optoelectronic conversion devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call