Abstract
Designing a multifunctional device that combines solar energy conversion and energy storage is an appealing and promising approach for the next generation of green power and sustainable society. In this work, we fabricated a single-piece device incorporating undoped WSe2, Re- or Nb-doped WSe2 photocathode, and zinc foil anode system enabling a light-assisted rechargeable aqueous zinc metal cell. Comparison of structural, optical, and photoelectric characteristics of undoped and doped WSe2 has further confirmed that ionic insertion of donor metal (rhenium and niobium) plays an important role in enhancing photoelectrochemical energy storage properties. The electrochemical energy storage cell consisting of Re-doped WSe2 (as the photoactive cathode and zinc metal as anode) showed the best photodriven enhancement in the specific capacitance of around 45% due to efficient harvesting of visible light irradiation. The assembled device exhibited a loss of 20% of its initial specific capacitance after 1500 galvanostatic charge-discharge cycles at 50 mA g-1. The cell also provided a specific energy density of 574.21 mWh kg1- and a power density of 5906 mW kg1- at 15 mA g-1. Under otherwise similar conditions, the pristine WSe2 and Nb-doped WSe2 showed photoenhanced induced capacitance of 43% and 27% at 15 mA g-1 and supplied an energy density of 436.4 mWh kg1- and 202 mWh kg1-, respectively. As a result, a reasonable capacitance improvement obtained by the Re-WSe2 photoenhanced zinc-ion capacitor could provide a facile and constructive way to achieve a highly efficient and low-cost solar-electrochemical capacitor system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.