Abstract

Abstract2D porous polymers with a planar architecture and high specific surface area have significant applications potential, such as for photocatalysis, electrochemical catalysis, gas storage and separation, and sensing. Such 2D porous polymers have generally been classified as 2D metal–organic frameworks, 2D covalent organic frameworks, graphitic carbon nitride, graphdiyne, and sandwich‐like porous polymer nanosheets. Among these, 2D porous polymers with sp2‐hybridized carbon () bonding are an emerging field of interest. Compared with 2D porous polymers linked by BO, CN, or CC bonds, ‐linked 2D porous polymers exhibit extended electron delocalization resulting in unique optical/electrical properties, as well as high chemical/photostability and tunable electrochemical performance. Furthermore, such 2D porous polymers are one of the best precursors for the fabrication of 2D porous carbon materials and carbon skeletons with atomically dispersed transition‐metal active sites. Herein, rational synthetic approaches for 2D porous polymers with bonding are summarized. Their current practical photoelectric applications, including for gas separation, luminescent sensing and imaging, electrodes for batteries and supercapacitors, and photocatalysis are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.