Abstract

Photonic crystals, characterized by their periodic structures, have been extensively studied for their ability to manipulate light. Typically, the development of 2D photonic crystals requires either sophisticated equipment or precise orientation of spherical nanoparticles. However, liquid-crystalline (LC) materials offer a promising alternative, facilitating the formation of periodic structures without the need for complex manipulation. Despite this advantage, the development of 2D photonic periodic structures using LC materials is limited to a few colloidal nanodisk liquid crystals. Herein, 2D photonic colloidal liquid crystals composed of biomineral-based nanorods and water is reported. The soft photonic materials with 2D structure by self-assembled LC colloidal nanorods are unique and a new class of photonic materials different from conventional solid 2D photonic materials. These colloids exhibit bright structural colors with high reflectance (>50%) and significant angular dependency. The structural colors are adjusted by controlling the concentration and size of the LC colloidal nanorods. Furthermore, mechanochromic hydrogel thin films with 2D photonic structure are developed. The hydrogels exhibit reversible mechanochromic properties with angular dependency, which can be used for an advanced stimuli responsible sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call