Abstract
Janus transition metal dichalcogenides (TMDs), which differ from their conventional counterparts by exhibiting two different layers of chalcogenides and an asymmetric out‐of‐plane structural configuration, are theorized to exhibit a relatively wide variety of properties. Herein, the structural, electronic, and optical properties of three Janus Pd‐based TMD monolayers (PdSSe, PdSTe, and PdSeTe) are investigated through comprehensive density functional theory calculations. The most stable ground‐state configurations of these Janus TMD monolayers correspond to the unique pentagonal configuration instead of the common 1T or 2H phases. The monolayers are semiconductors with moderate bandgaps (2.06–2.21 eV) and anisotropic optical absorption properties. By exhibiting suitable band edge positions with respect to the redox potentials of water, they can simultaneously facilitate the hydrogen and oxygen evolution reactions as water‐splitting photocatalysts. In addition, the effects of uniaxial and biaxial strains on the optoelectronic properties of the monolayers are investigated, and it is determined that the application of strain reduces their bandgaps and causes a redshift of their optical absorption spectra, thereby allowing them to harvest ultraviolet and visible photons more effectively. An insight on the intrinsic properties of 2D Pd‐based Janus TMDs is provided, which elucidates the rational design of photocatalysts for water splitting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: physica status solidi (RRL) – Rapid Research Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.