Abstract
AbstractAnisotropic organic molecular construction and packing are crucial for the optoelectronic properties of organic crystals. Two‐dimensional (2D) organic crystals with regular morphology and good photon confinement are potentially suitable for a chip‐scale planar photonics system. Herein, through the bottom‐up process, 2D halogen‐bonded DPEpe‐F4DIB cocrystals were fabricated that exhibit an asymmetric optical waveguide with the optical‐loss coefficients of RBackward=0.0346 dB μm−1and RForward=0.0894 dB μm−1along the [010] crystal direction, which can be attributed to the unidirectional total internal reflection caused by the anisotropic molecular packing mode. Based on this crystal direction‐oriented asymmetric photon transport, these as‐prepared 2D cocrystals have been demonstrated as a microscale optical logic gate with multiple input/out channels, which will offer potential applications as the 2D optical component for the integrated organic photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.