Abstract

Approximately 3 billion people have never used the internet due to its costs and inaccessibility, particularly in developing countries. To provide these areas with affordable internet, reducing the cost of building and launching satellites has become paramount in the assessment of their design, particularly their solar cells. While three-dimensional semiconductor materials like gallium arsenide (GaAs) have been the main material used in these cells to convert solar energy into electrical energy, two-dimensional (2D) materials like tellurene have demonstrated properties that warrant consideration. This research evaluates the potential of a novel 7-junction space solar cell configuration consisting of manganese phosphorus trisulfide, tungsten disulfide, rhenium disulfide, molybdenum disulfide, molybdenum ditelluride, bismuth oxyselenide, and tellurene to replace current 3-junction configurations using GaAs-based materials. Thermodynamic expressions, including the efficiency of a Carnot heat engine and a geometric optimization approach using the Shockley-Queisser triangle, were analyzed to derive equations for two properties critical to a space solar cell: efficiency and specific power. Computational simulations were run, and the results indicate that a 7-junction space solar cell configuration using 2D materials can enable a maximum efficiency gain of 12%, a mass reduction by over one-fifth, and a specific power output improvement of 54% at lower costs compared to GaAs-based space solar cells. The implications of this study point to the performance and cost feasibility of satellite usage for a broad range of applications, with social and environmental significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call