Abstract

Optical trapping and manipulation offer great flexibility as a non-contact microassembly tool. Its application to the assembly of microscale building blocks may open new doors for micromachine technology. In this work, we demonstrate all-optical assembly of microscopic puzzle pieces in a fluidic environment using programmable arrays of trapping beams. Identical shape-complimentary pieces are optically fabricated with submicron resolution using two-photon polymerization (2PP) technique. These are efficiently assembled into space-filling tessellations by a multiple-beam optical micromanipulation system. The flexibility of the system allows us to demonstrate both user-interactive and computer-automated modes of serial and parallel assembly of microscale objects with high spatial and angular positioning precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.