Abstract

The 19 amino acid signal peptide of rat liver aldehyde dehydrogenase, possessing a lysine substitution for an arginine and containing 3 extra amino acid residues at the C terminus, was studied by two-dimensional NMR in a dodecylphosphocholine micelle. In this membrane-like environment, the peptide contains two alpha-helical regions, both of which are amphiphilic, separated by a hinge region. The helix located closer to the C terminus is more stable than is the helix located near the N terminus. This suggests that the hydrophobic face of the C-terminal helix is buried within the hydrophobic region of the micelle. On the basis of these results a general model for protein translocation is presented in which the C-terminal amphiphilic helix of the signal region in the preprotein first binds to the mitochondrial membrane and then diffuses to the translocation receptor. The receptor then recognizes the N-terminal helix of the signal region, which is not anchored to the membrane. To explain how this signal peptide was imported into isolated mitochondria in the absence of energy or receptor protein [Pak, Y. K., & Weiner, H. (1990) J. Biol. Chem. 265, 14298-14307], a model for signal peptide translocation across a membrane barrier without the need for auxiliary membrane proteins is proposed. In this model the faces of the two helices fold upon each other, resulting in the mutual shielding of positively charged residues by the complementary hydrophilic face of the other amphiphilic helix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.