Abstract

Montmorillonite (MMT) dispersed g-C3N4/TiO2 hybrid nanocomposite for enhanced photo-catalytic hydrogen production from glycerol-water mixture has been investigated. The newly designed composite photo-catalysts were fabricated through a sol-gel assisted hydrothermal method and were characterized by XRD, XPS, SEM, EDX, TEM, FTIR, UV–Vis, Raman and PL spectroscopy. Well-designed g-C3N4/MMT/TiO2 heterojunction composite was obtained with 2D MMT structure, which promoted both visible light absorption and hindered charges recombination rate. The modification of 2D/0D g-C3N4/TiO2 heterojunction with 2D MMT sheets enhances H2 production due to MMT works as a mediator for effective charges trapping and transportation within the composite structure. The g-C3N4/MMT/TiO2 photo-catalyst exhibits highest H2 production of 4425 ppm h−1 g−1 at pH 7.0, which was 2.12 times higher than the pure TiO2 (2085 ppm h−1 g−1). In addition, increasing catalyst loading promotes more H2 evolution and among the different sacrificial reagents, glycerol-water mixture gave highest H2 production due to the presence of α-hydrogen atoms attached to carbon atoms. The enhanced photo-catalytic efficiency can be attributed to synergistic effect of MMT with g-C3N4/TiO2 heterojunction composite, appropriate band structure and transportation of electrons–holes with their hindered recombination rate. These composite catalysts exhibited excellent photo-catalytic stability for H2 production in cyclic runs. Possible reaction mechanism for hydrogen production over g-C3N4/MMT/TiO2 composite has been explained based on the experimental results. The finding of this work would be fruitful for hydrogen production applications with all sustainable systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call