Abstract

AbstractImproving interfacial solar evaporation performance is crucial for the practical application of this technology in solar‐driven seawater desalination. Lowering evaporation enthalpy is one of the most promising and effective strategies to significantly improve solar evaporation rate. In this study, a new pathway to lower vaporization enthalpy by introducing heterogeneous interactions between hydrophilic hybrid materials and water molecules is developed. 2D MoN1.2 nanosheets are synthesized and integrated with rGO nanosheets to form stacked MoN1.2‐rGO heterostructures with massive junction interfaces for interfacial solar evaporation. Molecular dynamics simulation confirms that atomic thick 2D MoN1.2 and rGO in the MoN1.2‐rGO heterostructures simultaneously interact with water molecules, while the interactions are remarkably different. These heterogeneous interactions cause an imbalanced water state, which easily breaks the hydrogen bonds between water molecules, leading to dramatically lowered vaporization enthalpy and improved solar evaporation rate (2.6 kg m−2 h−1). This study provides a promising strategy for designing 2D‐2D heterostructures to regulate evaporation enthalpy to improve solar evaporate rate for clean water production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call