Abstract
Current circulating tumor cells (CTCs) detection strategies based on surface epithelial markers suffer from low specificity in distinguishing between CTCs and epithelial cells in hematopoietic cell population. Tumor-associated miRNAs within CTCs are emerging as new biomarkers due to their high correlation with tumor development and progress. However, in-situ simultaneous analysis of multiple miRNAs in single CTC cell is still challenging. To overcome this limitation, a digital droplet microfluidic flow cytometry based on biofunctionalized 2D metal-organic framework nanosensor (Nano-DMFC) is developed for in situ detection of dual miRNAs simultaneously in single living breast cancer cells. Here, 2D MOF-based fluorescent resonance energy transfer (FRET) nanosensors are established by conjugating dual-color fluorescence dye-labeled DNA probes on MOF nanosheet surface. In the Nano-DMFC, 2D MOF-based nanoprobes are precisely microinjected into each single-cell encapsulated droplets to achieve dual miRNA characterization in single cancer cell. This Nano-DMFC platform successfully detects dual miRNAs at single-cell resolution in 10 mixed positive MCF-7 cells out of 10 000 negative epithelial cells in serum biomimic samples. Moreover, this Nano-DMFC platform shows good reproductivity in the recovery experiment of spiked blood samples, which demonstrate the high potential for CTC-based cancer early diagnosis and prognosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.