Abstract

The influence of grain boundary (GB) properties on device parameters of polycrystalline silicon (poly-Si) thin film solar cells is investigated by two-dimensional device simulation. A realistic poly-Si thin film model cell composed of antireflection layer, (n + )-type emitter, thick p -type absorber, and (p + )-type back surface field was created. The absorber consists of a low-defect crystalline Si grain with an adjacent highly defective grain boundary layer. The performances of a reference cell without GB, one with n -type and one with p -type GB, respectively, are compared. The doping concentration and defect density at the GB are varied. It is shown that the impact of the grain boundary on the poly-Si cell is twofold: a local potential barrier is created at the GB, and a part of the photogenerated current flows within the GB. Regarding the cell performance, a highly doped n -type GB is less critical in terms of the cell’s short circuit current than a highly doped p -type GB, but more detrimental in terms of the cell’s open circuit voltage and fill factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.