Abstract

This study demonstrates the utilization of 2D basin models to address overpressure development due to compaction disequilibrium in supra-allochthonous salt mini-basins with very high sedimentation rates in the Gulf of Mexico. By properly selecting 2D line sections with moderate stratigraphic resolution, it is possible to predict timing of overpressure development and approximate present-day overpressure distributions in the mini-basin. This study shows that even low resolution models with approximate information on the net-to-gross (sand:shale ratio) can average ±0.4 ppg with a maximum error of 1.0 ppg relative to pressure measurements in sandstones. The models based on age, depth, approximate lithology and an interpretation of complicated salt movement are adequate to evaluate pressure to address issues around trap containment and may be used for preliminary well planning. This study tested the results of overpressure prediction utilizing different stratigraphic resolutions and shows the sensitivity of overpressure modeling to 2D line selection. Also, three models were built to investigate how the permeability of salt welds affects overpressure development in an adjacent salt mini-basin. These results indicate that even a salt weld permeability reduction of 1.5 log mD results in a pressure difference between neighboring mini-basins. Additionally, these models qualitatively reproduced the seismic velocity volume which is supporting evidence that the salt welds in this mini-basin are at least partially sealing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call