Abstract

The CO2 reduction reaction (CO2RR) is a promising method that can both mitigate the greenhouse effect and generate valuable chemicals. The 2D-M2C12 with high-density transition metal single atoms is a potential catalyst for various catalytic reactions. Using an effective strategy, we screened 1s-Mn2C12 as the most promising electrocatalyst for the CO2RR in the newly reported 2D-M2C12 family. A low applied potential of -0.17 V was reported for the CO2-to-CH4 conversion. The relative weak adsorption of H atom and H2O in the potential range of -0.2 to -0.8 V, ensures the preferential adsorption of CO2 and the following production of CH4. The different loading amounts of Mn atoms on γ-graphyne (GY) were also investigated. The Mn atoms prefer doping in the nonadjacent triangular pores instead of the adjacent ones due to the repulsive forces between d-orbitals when the Mn loading is less than 32.3 wt % (5Mn). As the Mn concentration further increases, adjacent Mn atoms begin to appear, and the Mn@GY becomes metallic or half-metallic. The presence of four adjacent Mn atoms increases the d-band center of Mn@GY, particularly the dz2 center involved in CO2 adsorption, thereby enhancing the adsorption capacity for CO2. These findings indicate that 1s-Mn2C12 with high Mn atomic loadings is an excellent CO2RR electrocatalyst, and it provides new insights for designing efficient CO2RR electrocatalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call