Abstract
An analytical MHD model of coronal loops with compressible flows and including heating is compared to obser- vational data. The model is constructed via a systematic nonlinear separation of the variables method used to calculate several classes of exact MHD equilibria in Cartesian geometry and uniform gravity. By choosing a particularly versatile solution class with a large parameter space we are able to calculate models whose loop length, shape, plasma density, temperature and ve- locity profiles are fitted to loops observed with TRACE, SoHO/CDS and SoHO/SUMER. Synthetic emission profiles are also calculated and fitted to the observed emission patterns. An analytical discussion is given of the two-dimenional balance of the Lorentz force and the gas pressure gradient, gravity and inertial forces acting along and across the loop. These models are the first to include a fully consistent description of the magnetic field, 2D geometry, plasma density and temperature, flow velocity and thermodynamics of loops. The consistently calculated heating profiles which are largely dominated by radiative losses and concentrated at the footpoints are influenced by the flow and are asymmetric, being biased towards the upflow footpoint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.