Abstract

The challenges associated with heat dissipation in high-power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high-performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal-plane thermal conductivity and the capacity to facilitate cross-scale, multi-morphic structural design, have found widespread use as thermal fillers in the production of high-performance TIMs. To deepen the understanding of 2D material-based TIMs, this review focuses primarily on graphene and boron nitride-based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials-based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high-performance TIMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.