Abstract
A central hyperplane arrangement in ℂ2 with multiplicity is called a "locus configuration" if it satisfies a series of "locus equations" on each hyperplane. Following [4], we demonstrate that the first locus equation for each hyperplane corresponds to a force-balancing equation on a related interacting particle system on ℂ*: the charged trigonometric Calogero-Moser system. When the particles lie on S1 ⊂ ℂ*, there is a unique equilibrium for this system. For certain classes of particle weight, this is enough to show that all the locus equations are satisfied, producing explicit examples of real locus configurations. This in turn produces new examples of Schrödinger operators with Baker–Akhiezer functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.