Abstract

The high parallelism and low cost of the graphic processing units (GPUs) have attracted the interest of scientists and engineers requiring high computational power with a modest investment. This work explores the use of a GPU in the solution of the 2D lid-driven cavity flow problem using the pressure–velocity formulation for Reynolds numbers up to $$10{,}000$$ and turning to a 4th order finite difference scheme for spatial discretization. Results showed good agreement with those reported in the literature. The solver was implemented in both the CPU and the GPU in order to compare their performance, whereupon the latter was seventy times faster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.