Abstract

CO2 capture is an enabling technology for carbon conversion and storage; however, the high costs of the process have hindered its large-scale application so far. Therefore, new approaches for carbon abatement, particularly from diluted sources, are urgently needed. Herein, based on the adsorption and catalysis bifunctionality of 2D-layered Ni-O-Al2 O3 nanosheets, a two-step "capture and methanation" process is reported for the removal and utilization of CO2 , with no additional energy input for desorption being required. Continuous and nearly 100 % capture of CO2 was demonstrated at low temperatures (≤250 °C) and prolonged cycles. At isothermal conditions, the material could be fully regenerated with the production of methane, showing considerably higher time efficiency than temperature-swing and pressure-swing technologies. This strategy may pave a new way for CO2 reduction, providing a scalable connection between the power grid and the gas grid when H2 is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.