Abstract

Collecting real-time breath humidity data is important for calibrating gas sensors from interfering signals in breath components, ultimately for accurately monitoring a patient’s physiological information for applications in non-invasive and point-of-care diagnostics. In this work, atomically thin 2D metal oxide nanosheets (NSs) were synthesized by a liquid phase exfoliation process and their humidity sensing properties were investigated. Interestingly, Opposite humidity sensing responses (RD/RH) were observed between semiconducting oxide and metallic oxide NSs. For the semiconducting manganese (Mn) oxide NSs, decreasing resistance transitions were obtained with the response of 24.01 at 44.5% RH at low humidity levels (i.e., 6.1–45% RH), which was governed by proton (H+) conduction. On the other hand, the metallic ruthenium (Ru) oxide NSs exhibited increasing resistance transitions with the response of 0.28 at 96.3% RH at a high humidity range (i.e., 50–99.9% RH) as a result of proton trapping by accepting electrons upon the exposure to excess water molecules. Ru oxide NSs exhibited the response and recovery times of 68 sec and 8 sec, respectively, at 96.3% RH. Real-time breath humidity monitoring is demonstrated by integrating Ru oxide NSs with a wristband-type wireless sensing module, which can transmit the sensing data to a mobile device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call