Abstract

A soft x-ray laser amplifier based on solid target plasma is numerically investigated using a 2-D hydrodynamic code ARWEN with radiative transport solved by multigroup method based on adaptive mesh refinement. The code has been used to describe the spatial and temporal plasma evolution and, ultimately, to understand how to generate an ideal preformed plasma in the transient collisional pumping scheme. Firstly, we examine the influence of the laser driver spatial profile on the characteristics of the preformed plasma. We show that using a super Gaussian, instead of gaussian, spatial transverse profile leads to a substantial reduction of the transverse refraction by two orders of magnitude and to an enlargement of the gain zone surface by about a factor of 2. Secondly, we perform a study on the pre-pulse significance in the transient collisional scheme, as it was done several years ago for the J=0-1 Ne-like line in the quasi-steady-state pumping. All above studies were carried out for an iron target with gain on the J = 0- 1 neon like transition at λ = 25.5nm

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.