Abstract
In most collisional schemes of x-ray laser (XRL) experiments, a bow-like intensity distribution of XRL is often observed, and it is generally ascribed to the two-dimensional hydrodynamic behaviour of expanding plasma. In order to better understand its essence in physics, a newly developed two-dimensional non-equilibrium radiation hydrodynamic code XRL2D is used to simulate a quasi-steady state Ni-like Ag XRL experiment on ShenGuang-II facility. The simulation results show that the bow-like distribution of Ni-like ions caused by over-ionization in the central area of plasma is responsible for the bow-like shape of the XRL intensity distribution observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.