Abstract

AbstractThe Bienenstock, Cooper, and Munro (BCM) theory of synaptic plasticity is regarded as the most precise model of the synapse, and is more compatible with neuromorphic computing. However, the development in BCM synaptic modification is rather limited since the memristive devices used to emulate the BCM lack tunable forgetting rate. Compared with memristors, memtransistors provide another gate‐tunable freedom degree, which will help to modulate the forgetting rate. In this work, the authors demonstrate a perfect BCM learning rule based on the 2D heterostructure memtransistor through using triplet‐spike timing dependent plasticity model. Two critical characteristics of the BCM rule, sliding frequency threshold and enhanced depression effect, are perfectly presented due to their spontaneous/gate‐assistant forgetting effect. The experimental results are extremely consistent with the BCM learning rule and suggest the potential application of 2D memtransistors in high‐order spatiotemporal recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.