Abstract

2D freestanding nanocrystal superlattices represent a new class of advanced metamaterials in that they can integrate mechanical flexibility with novel optical, electrical, plasmonic, and magnetic properties into one multifunctional system. The freestanding 2D superlattices reported to date are typically constructed from symmetrical constituent building blocks, which have identical structural and functional properties on both sides. Here, a general ligand symmetry-breaking strategy is reported to grow 2D Janus gold nanocrystal superlattice sheets with nanocube morphology on one side yet with nanostar on the opposite side. Such asymmetric metallic structures lead to distinct wetting and optical properties as well as surface-enhanced Raman scattering (SERS) effects. In particular, the SERS enhancement of the nanocube side is about 20-fold of that of the nanostar side, likely due to the combined "hot spot + lightening-rod" effects. This is nearly 700-fold of SERS enhancement as compared with the symmetric nanocube superlattices without Janus structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.