Abstract

Recent face recognition algorithm can achieve high accuracy when the tested face samples are frontal. However, when the face pose changes largely, the performance of existing methods drop drastically. Efforts on pose-robust face recognition are highly desirable, especially when each face class has only one frontal training sample. In this study, we propose a 2D face fitting-assisted 3D face reconstruction algorithm that aims at recognizing faces of different poses when each face class has only one frontal training sample. For each frontal training sample, a 3D face is reconstructed by optimizing the parameters of 3D morphable model (3DMM). By rotating the reconstructed 3D face to different views, pose virtual face images are generated to enlarge the training set of face recognition. Different from the conventional 3D face reconstruction methods, the proposed algorithm utilizes automatic 2D face fitting to assist 3D face reconstruction. We automatically locate 88 sparse points of the frontal face by 2D face-fitting algorithm. Such 2D face-fitting algorithm is so-called Random Forest Embedded Active Shape Model, which embeds random forest learning into the framework of Active Shape Model. Results of 2D face fitting are added to the 3D face reconstruction objective function as shape constraints. The optimization objective energy function takes not only image intensity, but also 2D fitting results into account. Shape and texture parameters of 3DMM are thus estimated by fitting the 3DMM to the 2D frontal face sample, which is a non-linear optimization problem. We experiment the proposed method on the publicly available CMUPIE database, which includes faces viewed from 11 different poses, and the results show that the proposed method is effective and the face recognition results toward pose variants are promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.