Abstract

AbstractA large number of derivative phases in inorganic perovskites are reported with special structures and extraordinary performances in photoelectronic device applications. The reverse phase transition between derivative phases and perovskites usually induces recrystallization or forms mixed components. In this work, derivative phase‐induced growth of the CsPbBr3 micro–nanowire (MW) array by utilizing phase transition of the 2D CsPb2Br5 phase is reported. Owing to its layered structure and phase transition, annealing of CsPb2Br5 at a temperature of 550 °C combined with solvent quenching leads to a templating effect to form a high‐quality CsBr MW array. Subsequent PbBr2 deposition and the second annealing are employed to form aligned CsPbBr3 MW arrays. Based on this method, a CsPbBr3 MW array‐based photodetector is fabricated. The large grain size, less grain boundaries, and lower surface potential of the CsPbBr3 MW array lead to high device performance with a responsivity of 7.66 A W−1, a detectivity of ≈1012 Jones, and long‐term operational stability over 1900 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.