Abstract

We propose a novel scheme to form a 2D dark optical surface lattice (DOSL) for cold atoms on the surface of the dense flint glass by using two sets of blue-detuned evanescent wave interference fields and a blue-detuned evanescent wave field. In the 2D DOSL, cold atoms will be trapped in the vicinity of minimum intensity and suffered the minimal light shift as well as the lowest coherence loss. The total potential and trap-depth of the individual optical micro-trap in the 2D DOSL are high enough to trap cold atoms (T=120μK) released from the standard magneto-optical trap (MOT), and atoms trapped in the 2D DOSL can be cooled to several μK with the efficient intensity-gradient Sisyphus cooling. The lattice constant of the DOSL can be controllable by changing the incident angles of lights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call