Abstract

In this paper, the technique of the Stable Generalized Finite Element Method (SGFEM) is applied to the numerically constructed functions of the Generalized Finite Element Method with Global-Local Enrichments (GFEMgl). The application of the resulting approach, named SGFEMgl, is expanded here to 2-D quasi-static crack propagation problems. Crack growth is performed by a two-scale strategy, using local problems generated at each propagation step – whose solutions enrich a single global problem defined on a coarse mesh. Stress Intensity Factors (SIFs) computed along crack growth, strain energy measures, performance in blending elements and the condition number are used to study the accuracy and conditioning of SGFEMgl. The method is compared with the standard GFEMgl. Numerical experiments demonstrate remarkable accuracy of SGFEMgl in linear elastic fracture mechanics problems, considering crack opening modes I and II. Convergence rates analyses also show the superiority of the method, especially with the use of geometrical enrichments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call