Abstract

The inhibitory activity towards p34(cdc2)/cyclin b kinase (CBK) enzyme of 30 cytokinin-derived compounds has been successfully modelled using 2D spatial autocorrelation vectors. Predictive linear and non-linear models were obtained by forward stepwise multi-linear regression analysis (MRA) and artificial neural network (ANN) approaches respectively. A variable selection routine that selected relevant non-linear information from the data set was employed prior to networks training. The best ANN with three input variables was able to explain about 87% data variance in comparison with 80% by the linear equation using the same number of descriptors. Similarly, the neural network had higher predictive power. The MRA model showed a linear dependence between the inhibitory activities and the spatial distributions of masses, electronegativities and van der Waals volumes on the inhibitors molecules. Meanwhile, ANN model evidenced the occurrence of non-linear relationships between the inhibitory activity and the mass distribution at different topological distance on the cytokinin-derived compounds. Furthermore, inhibitors were well distributed regarding its activity levels in a Kohonen self-organizing map (SOM) built using the input variables of the best neural network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.