Abstract

We present two-dimensional infrared (2D IR) spectra of organic monolayers immobilized on thin metallic films at the solid liquid interface. The experiments are acquired under Attenuated Total Reflectance (ATR) conditions which allow a surface-sensitive measurement of spectral diffusion, sample inhomogeneity, and vibrational relaxation of the monolayers. Terminal azide functional groups are used as local probes of the environment and structural dynamics of the samples. Specifically, we investigate the influence of different alkyl chain-lengths on the ultrafast dynamics of the monolayer, revealing a smaller initial inhomogeneity and faster spectral diffusion with increasing chain-length. Furthermore, by varying the environment (i.e., in different solvents or as bare sample), we conclude that the most significant contribution to spectral diffusion stems from intra- and intermolecular dynamics within the monolayer. The obtained results demonstrate that 2D ATR IR spectroscopy is a versatile tool for measuring interfacial dynamics of adsorbed molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.