Abstract

The limited access to fast and facile general analytical methods for cellulosic and/or biocomposite materials currently stands as one of the main barriers for the progress of these disciplines. To that end, a diverse set of narrow analytical techniques are typically employed that often are time-consuming, costly, and/or not necessarily available on a daily basis for practitioners. Herein, we rigorously demonstrate a general quantitative NMR spectroscopic method for structural determination of crystalline cellulose samples. Our method relies on the use of a readily accessible ionic liquid electrolyte, tetrabutylphosphonium acetate ([P4444][OAc]):DMSO-d6, for the direct dissolution of biopolymeric samples. We utilize a series of model compounds and apply now classical (nitroxyl-radical and periodate) oxidation reactions to cellulose samples, to allow for accurate resonance assignment, using 2D NMR. Quantitative heteronuclear single quantum correlation (HSQC) was applied in the analysis of key samples to assess its applicability as a high-resolution technique for following cellulose surface modification. Quantitation using HSQC was possible, but only after applying T2 correction to integral values. The comprehensive signal assignment of the diverse set of cellulosic species in this study constitutes a blueprint for the direct quantitative structural elucidation of crystalline lignocellulosic, in general, readily available solution-state NMR spectroscopy.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.