Abstract

Elementary actuators performing branching or surface swelling are the primary units in the actuator integration system that is leveraged in works requiring a high versatility and complex motion. However, those primary actuator units often lack scalability or compatibility at assembly into a compact form due to the complexity of the structure and the actuation interference between adjacent units. Herein, it is shown that the phase‐change actuator in a simple bilayer structure of a top active layer and a bottom constraint layer achieves 1D surface swelling, such that the closely packed 2D array system of this actuator is easily constructed. Upon resistive heating, the active layer inflates based on the phase change of microliquid droplets embedded in an elastomer body. The inflation along the lateral direction of the actuator is suppressed by controlling the thickness ratio between the active and the constraint layers. The actuation of individual units in the array system is performed independently using a switching device with a microcontroller for the parallel application of resistive heating. The application of 2D shape morphing of the actuator arrays in beam steering and shape displays is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.