Abstract

: Titanium-based two-dimensional (2D) and layered compounds with open and stable crystal structures have attracted increasing attention for energy storage and conversion purposes, e.g., rechargeable alkali-ion batteries and hybrid capacitors, due to their superior rate capability derived from the intercalation-type or pseudocapacitive kinetics. Various strategies, including structure design, conductivity enhancement, surface modification, and electrode engineering, have been implemented to effectively overcome the intrinsic drawbacks while simultaneously maintaining their advantages as promising and competitive electrode materials for advanced energy storage and conversion. Here, we provide a comprehensive overview of the recent progress on Ti-based compound materials for highrate and low-cost electrochemical energy storage applications (mainly on rechargeable batteries and supercapacitors). The energy storage mechanisms, structure-performance relations, and performanceoptimizing strategies in these typical energy storage devices are discussed. Moreover, major challenges and perspectives for future research and industrial application are also illustrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call