Abstract

PurposeLymphovascular invasion (LVI) impairs surgical outcomes in lung adenocarcinoma (LAC) patients. Preoperative prediction of LVI is challenging by using traditional clinical and imaging factors. The purpose of this study was to evaluate the value of two-dimensional (2D) and three-dimensional (3D) CT texture analysis (CTTA) in predicting LVI in LAC. MethodsA total of 149 LAC patients (50 LVI-present LACs and 99 LVI-absent LACs) were retrospectively enrolled. Clinical data and CT findings were analyzed to select independent clinical predictors. Texture features were extracted from 2D and 3D regions of interest (ROI) in 1.25 mm slice CT images. The 2D and 3D CTTA signatures were constructed with the least absolute shrinkage and selection operator algorithm and texture scores were calculated. The optimized CTTA signature was selected by comparing the predicting efficacy and clinical usefulness of 2D and 3D CTTA signatures. A CTTA nomogram was developed by integrating the optimized CTTA signature and clinical predictors, and its calibration, discrimination and clinical usefulness were evaluated. ResultsMaximum diametre and spiculation were independent clinical predictors. 1125 texture features were extracted from 2D and 3D ROIs and reduced to 11 features to build 2D and 3D CTTA signatures. There was significant difference (P < 0.001) in AUC (area under the curve) between 2D signature (AUC, 0.938) and 3D signature (AUC, 0.753) in the training set. There was no significant difference (P = 0.056) in AUC between 2D signature (AUC, 0.856) and 3D signature (AUC, 0.701) in the test set. Decision curve analysis showed the 2D signature outperformed the 3D signature in terms of clinical usefulness. The 2D CTTA nomogram (AUC, 0.938 and 0.861, in the training and test sets), which incorporated the 2D signature and clinical predictors, showed a similar discrimination capability (P = 1.000 and 0.430, in the training and test sets) and clinical usefulness as the 2D signature, and outperformed the clinical model (AUC, 0.678 and 0.776, in the training and test sets). Conclusions2D CTTA signature performs better than 3D CTTA signature. The 2D CTTA nomogram with the 2D signature and clinical predictors incorporated provides the similar performance as the 2D signature for individual LVI prediction in LAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call